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ABSTRACT
The motor and sensory systems work collaboratively to fulfill cognitive tasks, such as speech. For 
example, it has been hypothesized that neural signals generated in the motor system can transfer 
directly to the sensory system along a neural pathway (termed as motor-to-sensory transforma-
tion). Previous studies have demonstrated that the motor-to-sensory transformation is crucial for 
speech production. However, it is still unclear how neural representation dynamically evolves 
among distinct neural systems and how such representational transformation depends on task 
demand and the degrees of motor involvement. Using three speech tasks – overt articulation, 
silent articulation, and imagined articulation, the present fMRI study systematically investigated 
the representational formats and their dynamics in the motor-to-sensory transformation. Frontal- 
parietal-temporal neural pathways were observed in all three speech tasks in univariate analyses. 
The extent of the motor-to-sensory transformation network differed when the degrees of motor 
engagement varied among tasks. The representational similarity analysis (RSA) revealed that 
articulatory and acoustic information was represented in motor and auditory regions, respectively, 
in all three tasks. Moreover, articulatory information was cross-represented in the somatosensory 
and auditory regions in overt and silent articulation tasks. These results provided evidence for the 
dynamics and task-dependent transformation between representational formats in the motor-to- 
sensory transformation.
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1. Introduction

Speech production is one of the most complex actions. 
Yet we can speak efficiently and effortlessly in daily life. 
One of the proposed mechanisms for controlling speech 
production is based on the motor-to-sensory transfor-
mation – the planned motor commands can transmit 
internally and activate sensory regions that respond to 
external feedback (Wolpert & Ghahramani, 2000). The 
motor-to-sensory transformation (c.f. efference copy/ 
corollary discharge or internal forward model) provides 
a functional computation in which motor plans lead to 
predictions of the sensory consequences via motor-to- 
sensory neural projections (Parrell et al., 2017; Whitford 
et al., 2017). Specifically, in speech, the sensory conse-
quences of speaking can be predicted by the motor 
system activation (hereafter also referred as motor- 
based prediction). This prediction is compared with 
feedback for error detection and correction in speech 
motor control (Guenther et al., 2006; Hickok, 2012; 

Houde & Nagarajan, 2011; Tian et al., 2018; Tian & 
Poeppel, 2010, 2012, 2013, 2015; Tian et al., 2016).

Previous studies have proposed how this motor-to- 
sensory transformation mechanism facilitates the 
speech production in detail (Guenther et al., 2006; 
Hickok, 2012; Houde & Nagarajan, 2011; Tian & 
Poeppel, 2010, 2012). Specifically, a copy of motor sig-
nals from the frontal cortices (termed as efference copy or 
corollary discharge) is sent to the parietal and temporal 
areas to internally induce the somatosensory and audi-
tory representations of the speech targets. The motor 
action can be updated according to the interaction 
among the estimated sensorimotor state, predicted sen-
sory consequences, and the actual feedback (Guenther 
et al., 2006; Hickok, 2012; Houde & Nagarajan, 2011; Tian 
& Poeppel, 2010). Therefore, this motor-based prediction 
stream theoretically involves the dynamics of the repre-
sentational format of speech (from the motor system to 
the sensory system) (Tian & Poeppel, 2013; Tian et al., 
2016).
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Previous neuroimaging studies demonstrate conver-
ging neural networks of sensory and motor systems that 
mediate different types of speech production. During 
overt articulation (OA), the temporal, parietal, and frontal 
lobes, including the insular cortex, are commonly 
observed for processing auditory, somatosensory, and 
motor information that are crucial for controlling speech 
production (Adank, 2012; Price, 2012). Comparing to OA, 
in silent articulation (SA), similar motor processes have 
been observed in the inferior frontal gyrus (Huang et al., 
2002). Moreover, similar somatosensory and auditory 
representations have been suggested by the activation 
in the inferior parietal and superior temporal cortices 
during SA (Anumanchipalli et al., 2019; Cogan et al., 
2014). For the imagined articulation (IA), similar frontal, 
parietal, and temporal networks as observed in OA have 
been observed, including the inferior frontal gyrus, insu-
lar, inferior parietal cortex, and superior temporal gyrus 
and sulcus (Hickok et al., 2003; Tian et al., 2016). 
Therefore, all types of speech production tasks activate 
common neural networks that are at least partially over-
lapped among tasks and indicate the common sensor-
imotor processes.

Furthermore, different types of speech production 
tasks may induce different neural representations in the 
common sensorimotor networks. Previous studies mainly 
combined the OA with IA tasks to examine the motor-to- 
sensory transformation (Tian & Poeppel, 2013; Tian et al., 
2016). It is assumed that both overt and covert speech 
share the motor-to-sensory transformation but are differ-
ent in the involvement of primary motor cortices for 
action execution. That is, OA provided a reference of 
cortex activation involved in all aspects of speech produc-
tion, whereas IA was hypothesized to implement the 
motor-based prediction using the motor-to-sensory trans-
formation without the contamination of overt action and 
feedback (Tian & Poeppel, 2013; Tian et al., 2016). In 
addition to the OA and IA tasks, previous studies also 
used the SA task (same articulatory movement without 
producing sounds) to examine this transformation. These 
studies showed that the motor-based prediction mechan-
ism is more involved in SA than IA task (Okada et al., 2017; 
Oppenheim & Dell, 2008, 2010). That is, the strength of 
representation along the motor-to-sensory transforma-
tion pathway would be graded according to the detailed 
articulatory movement.

Therefore, it is crucial to provide empirical evidence for 
the dynamics of representational format in the motor-to- 
sensory transformation and examine whether the 
dynamics was also task-dependant. In detail, the first and 
foremost question is the correspondence between the 
representational format and the transformation stage. 
Specifically, is the transformation of representation format 

a strictly serial process that updates from the motor to 
sensory domains without overlapping? Second, how do 
the motor and sensory representational formats change 
among tasks that involve graded articulator motor actions? 
Specifically, could the engagement of overt articulatory 
movement in OA and SA tasks strengthen the correspond-
ing representation?

Previous studies mainly combined univariate analyses 
with overt and covert speech tasks to map out motor-to- 
sensory transformation pathways (Kleber et al., 2017; Tian & 
Poeppel, 2013, 2015). Note that univariate activation is 
quantified by measuring relative differences between con-
ditions, and the results depend on what conditions are 
being compared. Therefore, the univariate analysis can 
reveal cortical regions that mediate cognitive functions. 
However, it is not optimal to examine the detailed repre-
sentational formats. An advanced analysis method – repre-
sentation similar analysis (RSA) – is more suitable to 
examine the neural representation of speech features 
(Evans & Davis, 2015). By taking advantage of systematic 
variance distributed across voxels like other multi-voxel 
pattern analysis (MVPA) methods, RSA makes it possible 
to examine representational content such as phonetic fea-
tures (Feng et al., 2017; Mur et al., 2009). In detail, we can 
particularly create distinct articulatory and acoustic 
Representation Dissimilar Matrices (RDMs) to probe the 
detailed neural representation in the motor-to-sensory 
transformation (Carey & Mcgettigan, 2016; Carey et al., 
2017).

The present study used three speech tasks (OA, SA, and 
IA) and combined the univariate analysis with RSA to sys-
tematically investigate the representational formats in the 
motor-to-sensory transformation. Univariate analysis was 
first used to reveal the regions engaged in the motor and 
sensory systems during speech production. More impor-
tantly, RSA was used to systematically investigate the 
representational transformation of phonetic formats. 
Specifically, we used 16 consonant-vowel syllables and 
constructed theoretical RDMs that reflected articulatory 
and acoustic information, respectively. The correlations 
between theoretical RDMs and the neural pattern RDMs 
were obtained to examine the representational format of 
speech features in the motor-to-sensory transformation 
among different speech tasks. Because the common 
motor and sensory neural networks mediate different 
types of speech production (Price, 2012), we first predicted 
that the motor-to-sensory transformation was available in 
all three speech tasks. Articulatory and acoustic information 
should be selectively represented in the motor and sensory 
regions among all three tasks. Furthermore, previous the-
oretical and empirical works have indicated a common 
representation linking between sensory and motor systems 
(Assaneo et al., 2019; Cogan et al., 2014; Hickok, 2012; Zhen 
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et al., 2019). Moreover, the engagement of overt articula-
tory movement strengthens the representations from pho-
nological to phonetic levels (Oppenheim & Dell, 2008, 
2010). Therefore, we further predicted that the OA and SA 
tasks could strengthen and extend the articulatory infor-
mation to parietal somatosensory or even temporal audi-
tory regions in the motor-to-sensory transformation 
pathway (Carey et al., 2017).

2. Methods

2.1. Participants

Nineteen university students (9 males, age range: 19–26, 
mean: 22.8, SD: 2.68) participated in the fMRI experi-
ment. Their native languages were all Mandarin 
Chinese. They were all right-handed with normal or 
corrected to normal vision. All the participants reported 
no history of speech or language disorders. This study 
was approved by the New York University Shanghai 
Institutional Review Board (IRB). Written informed con-
sent was obtained from all participants who received 
monetary incentives for their participation.

2.2. Stimuli and task

We combined each of the eight consonants (/b/,/p/,/d/ 
,/t/,/w/,/f/,/z/, and/s/) with each of the two vowels (/a/ 
and/u/) to construct 16 Chinese consonant-vowel sylla-
bles (/ba/,/pa/,/da/,/ta/,/wa/,/fa/,/za/,/sa/,/bu/,/pu/,/du/ 
,/tu/,/wu/,/fu/,/zu/and/su/) that were used in this study. 
All syllables are common conversational speech in 
Mandarin Chinese. We adopted three tasks in this 
study: OA, SA, and IA. For the OA task, participants were 
asked to overtly articulate each syllable. For the SA task, 
they were asked to articulate each syllable without pho-
nating. For the IA task, they were asked to imagine 
speaking each syllable without overtly articulating. 
Note that participants were required to generate the 
articulatory movements in the SA task. However, such 
movements were strongly discouraged in the IA task. 
Participants were asked to articulate with the first tone 
(high) in Chinese for all tasks.

2.3. Procedure

Each participant completed three functional runs, with 
each run contained one task. As shown in Figure 1, each 
trial began with a visual cue displayed at the center of 
the screen for 1000 ms. Different pictures of the visual 
cue indicated the task and the syllable labels beneath 
the picture informed the content of the task. A 1200 ms 
blank, a 600 ms blue circle, and 600 ms blank were then 

presented sequentially. Participants were asked to begin 
the task time-locked to the onset of the blue circle. They 
were asked to articulate the syllable only once for each 
trial but not explicitly instructed to hold the syllable for 
a specific amount of time to ensure the natural of articu-
lation. The inter-trial interval (ITI) was randomly chosen 
from 4440 to 6660 ms (2 to 3 TRs, see MRI scanning 
protocol for details), temporally jittered by 148 ms incre-
ments. Therefore, the average duration of trials was 
8950 ms (1000 ms+2400 s + 5550 ms).

Each syllable was presented three times in each task 
(Yee et al., 2010). Each task also included six resting trials 
that were 8500 ms in length and visually cued with the 
word ‘rest’. Therefore, each functional run contained 54 
trials. The stimuli presentation of each run was preceded 
by 10 s and then followed by 20 s of passive viewing of 
an asterisk to enhance the estimation of baseline signals. 
Therefore, the total duration of each functional run was 
510.6 s. The order of the tasks was presented with the 
Latin Square Design across participants to control the 
task order effect. The order of trials in each task was 
randomized once and then presented in the same 
order to each participant.

Before the fMRI experiment, each participant was 
asked to familiarize themselves with all the syllables 
and conduct a practice session. The procedure of prac-
tice session was the same as the fMRI experiment except 
that each syllable was presented only once. Participants 
were asked to focus on the timing of tasks as well as 
differences among tasks (articulation in OA without 
much head movement, mouth movement without mak-
ing sounds in SA, and generate vividness of imagery in 
IA). Feedback was provided if needed. The practice 
lasted for about 15 min on average. After the fMRI 
experiment, we recorded the production of the 16 sylla-
bles by each participant in a sound-isolated booth. This 
is for the construction of participant-specific acoustic 
RDMs (see RDM construction part for details).

Figure 1. Experimental procedure. The visual cue and syllable 
label indicated a specific task and syllable content to perform. 
Participants began the task time-locked to the onset of the blue 
circle.

COGNITIVE NEUROSCIENCE 3



2.4. MRI scanning

Scanning was performed with a Siemens Trio Tim 3 T 
system in East China Normal University. Functional data 
were acquired using a gradient-echo, echo-planar pulse 
(EPI) sequence (TR = 2220 ms; TE = 30 ms; 38 slices; 
3 × 3 × 3 mm3 voxel size with 0.6 mm interslice gap). 
We rotated the scanning orientation counter-clockwise 
about 30° from the AC-PC line to maximize the coverage. 
Each functional run lasted 230 TRs (510.6/2.22 = 230). 
High resolution T1-weighted anatomical images were 
collected before the functional scan from each partici-
pant. Specifically, these images were acquired with 
a magnetization-prepared rapid acquisition gradient 
echo (MP-RAGE) sequence and sagittal slice orientation 
(176 slices, TR = 1900 ms, TE = 2.53 ms, FOV = 256 mm × 
256 mm, flip angle = 9º, voxel size = 1 × 1 × 1 mm3, 
duration = 4 min 26 s).

2.5. MRI preprocessing and univariate analysis

MRI data were analyzed using SPM12 (http://www.fil.ion. 
ucl.ac.uk/spm/). For each participant, all functional images 
were corrected for head-motion and realigned to the first 
functional image. The mean functional images were cor-
egistered with the structural image and then segmented. 
The parameters obtained in the segmentation step were 
used to normalize the functional images onto the 
Montreal Neurological Institute (MNI) space. The resulting 
normalization functional images were smoothed with 
a Gaussian kernel of 6-mm full width at half maximum.

The functional images were further analyzed using 
the general linear model (GLM) at the first level for 
each task, respectively. Specifically, a standard hemody-
namic response function (HRF) model was fitted to the 

data to estimate the voxel-wise statistical parameters 
(beta values in SPM). In each model, the first regressor 
corresponded to the presentation of all stimuli. An addi-
tional six regressors of no interest representing the 
motion parameters were entered into the GLM. We 
used a high-pass filter with a time constant of 128 s to 
reduce the influence of low-frequency noise. Parameter 
estimates for the events of interest were obtained, and 
statistical maps were created.

For the group-level analysis, we first combined the 
contrast maps across the participants and performed 
a voxel-wise t-test against the intrinsic baseline for 
each task. This was to identify brain regions activated 
for each task, and ensure that our activation maps were 
consistent with previous speech articulation studies. 
Furthermore, we performed voxel-wise t-tests for 
OA > SA, OA > IA, and SA > IA contrasts to identify 
brain regions showing the task effect. All reported 
whole-brain analyses used voxels significant at 0.005 
with an FWE correction at the cluster level with 
a critical cluster level of 0.05. We reported the resultant 
significance as t-value maps in MNI space.

2.6. RDM construction

We developed the articulator and acoustic (speech spec-
tra and formants) theoretical model RDMs respectively 
(Figure 2). They are sensitive to different kinds of pho-
netic information based on the 16 syllables. We con-
structed the articulator RDM based on the number of 
same features in articulatory dimensions (the number of 
articulatory features that each pair of syllables share). 
According to previous literature (Correia et al., 2015), 
there are three articulatory dimensions in consonants: 
articulation manner, articulation place, and voicing. The 

Figure 2. The RDMs for the RSA. The articulatory RDM was constructed based on the articulatory features. The acoustic RDM was 
constructed based on the PSD information. The syllables of the horizontal and vertical direction of RDMs are/ba/,/pa/,/da/,/ta/,/wa/,/fa/ 
,/za/,/sa/,/bu/,/pu/,/du/,/tu/,/wu/,/fu/,/zu/and/su/.
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8 consonants we selected orthogonally cover all the 3 
articulatory dimensions: stop (/b/,/p/,/d/,/t/) and fricative 
(/w/,/f/,/z/,/s/) for manner of articulation; bilabial/labio- 
dental (/b/,/p/,/w/,/f/) and alveolar (/d/,/t/,/z/,/s/) for place 
of articulation; and voiced (/b/,/d/,/w/,/z/) and unvoiced 
(/p/,/t/,/f/,/s/) for voicing. Furthermore, the feature of the 
vowels (/a/and/u/) is similar in articulation manner and 
voicing dimensions but different in the articulation place 
dimension. We constructed the articulatory RDM as fol-
lows. Firstly, we made pairs of all 16 syllables to yield 120 
(16 × (16–1)/2) syllable pairs. For each pair of syllables, 
we calculated the number of the same features in all 
three articulatory dimensions. We calculated this value 
for the consonants and vowels separately and subse-
quently added them to represent the overall articulatory 
information of syllable. These values were normalized to 
a range between 0 and 1 using the min-max method. 
The normalized scores were subtracted from 1 to repre-
sent the articulatory dissimilarity of each pair.

We constructed the acoustic RDMs based on the 
power spectral density (PSD) information of syllables. 
We used the recorded sound files of syllables from each 
participant to construct the participant-specific acous-
tic RDM. Specifically, we first extracted the samples of 
each syllable in Matlab. We then derived the PSD matrix 
of each syllable, using a Goertzel discrete Fourier trans-
form spectrogram algorithm (range 0.1–5000 Hz; 260 
window length; 0.1 Hz increment) (see Carey et al., 
2017, for previous use of the same settings). Each PSD 
matrix was then cross-correlated over all possible pairs 
of syllables (yielding a 16 × 16 matrices). The correlation 
values were subtracted from 1 to create the acous-
tic RDM.

2.7. Regional-level RSA for each task

We were mainly interested in the neural representation 
of phonetic features in specific cortices. Therefore, we 
used ROI-based RSA for the following two reasons (Feng 
et al., 2017; Hjortkjaer et al., 2017). First, we can directly 
examine the neural representation of specific ROIs in the 
motor-to-sensory transformation stream. Second, ROI 
analysis avoids the problem of multiple comparisons 
correction that may penalize the relatively weak effect 
(Poldrack, 2007).

According to previous studies, articulatory prepara-
tion and execution mainly localizes in the anterior insula 
(INS) (Baldo et al., 2011) and the inferior frontal gyrus 
(IFG) (Rampinini et al., 2017). Estimating the somatosen-
sory consequences localizes in the angular gyrus (AG) (in 
the temporal-parietal junction) (Rogalsky et al., 2015). 
Speech perception localizes in superior temporal gyrus 
(STG) (Bonte et al., 2014; Mesgarani et al., 2014). 
Therefore, we created ROIs in these brain regions for 
this analysis. Specifically, we used the Harvard-Oxford 
Atlas to define the independent anatomical ROI (prob-
ability > 0.3). We manually extracted the anterior part of 
the insula region in the Harvard-Oxford Atlas. In all, we 
defined the following 6 ROIs in each hemisphere: ante-
rior INS (aINS), IFG-pars triangularis (IFG-PT), IFG-pars 
opercularis (IFG-PO), AG, posterior STG (pSTG) and ante-
rior STG (aSTG) (see Figure 3). We showed the voxel 
number of each ROI in Supplementary Table 1.

We used the CoSMo RSA toolbox (Oosterhof et al., 
2016) and customized Matlab functions for this analysis. 
We conducted RSA on functional images following rea-
lignment and normalization but without smoothing. We 

Figure 3. The ROIs used for Regional-level RSA analysis. Note that symmetrical ROIs in both hemispheres were defined for analysis. 
Only ROIs in the left hemisphere were illustrated here. We divided the ROIs into motor ROIs (aINS, IFG-PT and IFG-PO) and 
somatosensory & auditory ROIs (AG, pSTG, and aSTG). Abbreviations: aINS: anterior insula; IFG-PT: inferior frontal gyrus-pars 
triangularis; IFG-PO: inferior frontal gyrus-pars opercularis; AG: angular gyrus; pSTG: posterior superior temporal gyrus; aSTG: anterior 
superior temporal gyrus.
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used the GLM with individual regressors for each syllable 
and further calculated the single-syllable t-statistic maps 
for each task. The ROI images were resliced to the same 
resolution as that of the t-statistic images. For each ROI, 
the t-statistic value was extracted to calculate the dis-
similarity of the neural activation pattern between each 
pair of syllables (using 1-Pearson’s correlation). This cre-
ated the neural activation pattern RDM. We then directly 
computed the correlation coefficient between the 
neural RDM with the theoretical model RDM (Feng 
et al., 2017). The resulting correlation values were then 
Fisher’s r-to-z transformed. At the group level, we used 
one-sample t-tests to assess whether the averaged cor-
relation value of specific ROI was significantly higher 
than 0 (Zhao et al., 2016).

3. Results

3.1. Univariate analysis results

To obtain the main effects of each speech task and 
reveal the core network that mediates motor-to- 
sensory transformation, univariate analysis was con-
ducted. The univariate analyses of the three tasks 
showed similar activation. As shown in Figure 4(a), acti-
vation was observed in the INS, IFG, AG, and STG regions 
under both the OA and SA tasks. Under the IA task, 
activation was observed in the bilateral IFG, left AG, 
STG, and middle temporal gyrus (MTG). Apart from the 

classic frontal-parietal-temporal cortex, we also found 
activation in the cerebellum in all three tasks.

In the paired comparison, the OA > SA contrast revealed 
greater activation in the bilateral STG and superior frontal 
gyrus (SFG). For both the OA > IA and SA > IA contrasts, we 
found greater activation in bilateral posterior IFG, INS, and 
STG. Moreover, we also found greater activation in the 
cerebellum for the SA > IA contrast (See Figure 4(c)).

3.2. RSA results

To investigate the detailed representation in the motor- 
to-sensory transformation network, RSA was conducted 
in anatomically defined ROIs for each speech task. 
According to the distinct systems in motor-to-sensory 
transformation, we divided these ROIs into two groups – 
motor ROIs (aINS, IFG-PT, and IFG-PO) and somatosen-
sory & auditory ROIs (AG, pSTG, and aSTG). The overall 
RSA results showed clear patterns. That is, 1) articulatory 
and acoustic information was represented in motor and 
somatosensory & auditory regions, respectively; and 2) 
the information flow between motor and perceptual 
systems showed a gradient transformation as the articu-
latory information was also represented in the somato-
sensory and sensory regions in the OA and SA tasks.

Specifically, for the articulatory RDM, in the motor ROIs 
that included bilateral aINS, IFG-PT and IFG-PO (left group 
of bars in the left column of Fig. 5), significant results were 
observed in bilateral aINS, left IFG-PT and left IFG-PO in the 

Figure 4. Brain activation maps of univariate analysis results in three tasks. (a) Activation maps for each task against the baseline. (b) 
Overlap maps of significant brain regions that were activated in three tasks. Left, the activation regions were superimposed on lateral 
surface rendering templates. Right, the activation regions were superimposed on coronal and axial templates. (c) Activation maps of 
differences between a pair of tasks. L: left hemisphere; R: right hemisphere; OA: overt articulation; SA: silent articulation; IA: imagined 
articulation.
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OA task. We also found significant results in the left aINS 
and IFG-PO in the SA task and in left aINS, IFG-PT and IFG- 
PO in the IA task. In the somatosensory & auditory ROIs that 
included bilateral AG, pSTG and aSTG (right group of bars 
in the left column of Fig. 5), significant results were 
obtained in the left AG, bilateral pSTG and right aSTG in 
the OA task. We also found significant results in right pSTG 
and aSTG in the SA task. In the IA task, we did not find any 
significant results for the articulatory RDM in somatosen-
sory or auditory ROIs.

For the acoustic RDM, in the somatosensory & audi-
tory ROIs that included bilateral AG, pSTG and aSTG 
(right group of bars in the right column of Fig. 5), sig-
nificant results were observed in left AG and bilateral 
pSTG in the OA task. We also found significant results in 
bilateral AG, right pSTG and right aSTG in the SA task and 
significant result in left aSTG in the IA task. However, we 
did not find any significant results for the acoustic RDM 
in motor area ROIs (left group of bars in the right column 
of Fig. 5). Detailed statistics of regional-level RSA results 

with the articulatory and acoustic RDM were summar-
ized in Supplementary Table 1 and 2 respectively.

4. Discussion

The present study investigated the dynamics and task 
dependence of neural representations in the motor-to- 
sensory transformation during speech production. The 
univariate analyses revealed the frontal-parietal- 
temporal neural network in all three speech tasks. The 
extent of this motor-to-sensory transformation network 
showed a monotonic decrease from OA, SA to IA task. 
These results were consistent with previous studies 
(Okada et al., 2017; Tian et al., 2016) and provided further 
evidence for the motor-based prediction mechanism. 
More importantly, the RSA results revealed that articu-
latory and acoustic information was represented in 
motor and auditory regions, respectively, in all three 
tasks. Furthermore, articulatory information was cross- 
represented in the somatosensory and auditory regions 

Figure 5. Regional-level RSA results for each theoretical RDM and each task. ROIs are divided into motor ROIs (aINS, IFG-PT and IFG-PO) 
and somatosensory & auditory ROIs (AG, pSTG and aSTG). The colors of the bars represent the significance of results – red for 
significant results in the motor ROIs and blue for significant results in the somatosensory & auditory ROIs, whereas gray for no 
significant results. Error bars denote standard error of the mean. Abbreviations: aINS: anterior insula; IFG-PT: Inferior Frontal Gyrus-pars 
triangularis; IFG-PO: inferior frontal gyrus-pars opercularis; AG: angular gyrus; pSTG: posterior superior temporal gyrus; aSTG: anterior 
superior temporal gyrus. OA: overt articulation; SA: silent articulation; IA: imagined articulation. ***, P < 0.005; **, P < 0.01; *, P < 0.05.
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in OA and SA tasks. These RSA results further suggested 
that the representational format of phonetic features is 
dynamic and task-dependent in the motor-to-sensory 
transformation.

The univariate analysis results showed that the fron-
tal-parietal-temporal neural network was activated in all 
three speech tasks (Fig. 4). This provided evidence for 
the motor-to-sensory transformation and its neural path-
way in speech production. That is, motor simulation 
involves the motor cortex such as INS and IFG to induce 
the efference copy. The efference copy is sent to the 
parietal and temporal areas and internally induces the 
corresponding sensory neural representations. Note we 
found activation of the IA > baseline contrast in the 
motor cortex (INS, IFG), somatosensory cortex (AG), and 
auditory representation cortex (STG, MTG). These results 
demonstrated that imagery without actual articulator 
movements was sufficient to form the motor-to- 
sensory transformation stream (Tian & Poeppel, 2012; 
Tian et al., 2016). In other words, the realization of articu-
lated movements is not necessary for the formation of 
this motor-based prediction mechanism. However, note 
bilateral posterior IFG, AG, and STG were more activated 
in the SA > IA contrast, and bilateral STG and SFG were 
more activated in the OA > SA contrast. These results 
suggested that articulation-related movements, espe-
cially for actual speech articulation, could strengthen 
the neural activity in the motor-to-sensory transforma-
tion (Okada et al., 2017).

An important innovation of the present study was 
that we used RSA to examine the neural representations 
of phonetic features in the motor-to-sensory transforma-
tion. The RSA results first showed a clear tendency that 
articulatory information was more represented in motor 
regions, and acoustic information was more represented 
in somatosensory and sensory regions. Specifically, in all 
three tasks, articulatory information was represented in 
motor areas such as aINS and IFG, whereas acoustic 
information was represented in somatosensory and sen-
sory regions such as AG and STG (Fig. 5). These results 
provide a holistic picture of the dynamics of representa-
tional formats in the motor-to-sensory transformation. 
That is, the transformation of representation format is 
a relatively cascaded process. Articulatory information 
involves in the motor simulation stage, then articulatory 
information was updated to acoustic information after 
the motor signal is sent for the somatosensory estima-
tion and auditory formation (Hickok, 2012; Houde & 
Nagarajan, 2011; Tian & Poeppel, 2010, 2012, 2013; Tian 
et al., 2016).

The detailed transformation process was revealed in 
this study. In the RSA results, we observed that the 
articulatory information was represented in both motor 

and somatosensory & auditory regions. Further, both the 
articulatory and acoustic information was represented in 
LAG, and bilateral pSTG in OA task (Figure 5). These 
results are consistent with previous studies that showed 
the representation of articulatory information (vocal 
tract or F1–F2 2D distance) in the auditory temporal 
lobe (Carey et al., 2017). This bimodal representation is 
one of the possible mechanisms that serve as an inter-
mediate step that bridges the motor and sensory 
systems.

The observations of articulatory representations in 
the auditory regions may imply the target of speech 
production. Compared to the common consensus of an 
auditory target in speech production, the somatosen-
sory outcome could be another target for the action of 
speech to fulfill (e.g. Tremblay et al., 2003). The articu-
latory representations in the somatosensory areas dur-
ing OA and auditory areas during OA and SA are 
consistent with the possible somatosensory target of 
speech production. Our results of bimodal representa-
tions in the auditory areas via motor-to-sensory transfor-
mation provide possible solutions to reconcile the 
differences between the auditory and somatosensory 
targets of speech production.

During the dynamics of representational format, the 
RSA results also suggested the task-dependent repre-
sentation of phonetic features in the motor-to-sensory 
transformation. Articulatory information was repre-
sented in somatosensory and sensory regions in the 
OA and SA tasks but not apparently in the IA task (Fig. 
5). This task-dependent modulation on the motor-to- 
sensory transformation is consistent with the hypoth-
esis that motor representation serves as a modulatory 
role in speech (Hickok et al., 2009; Stokes et al., 2019; 
Tian & Poeppel, 2012). Specifically, the theory states 
that motor activation is not a core representation of 
speech. The engagement of motor representation 
depends on the task demand. In our results, only the 
involvement of articulator movement in OA and SA 
induced the articulatory representations in the auditory 
areas, but not in IA. These results suggest that the 
imagery task selectively induces the core representa-
tion of speech, whereas the task demand of articulator 
movement in OA and SA may evoke the auxiliary repre-
sentation of speech.

The motor-to-sensory transformation is a canonical 
computation that enables the interaction between pro-
duction and perception. The observed dynamics of 
representational transformation and the task- 
dependent modulation are consistent with our recently 
proposed functional distinctions between different 
motor signals along the entire time course of speech 
production (Li et al., 2020). Specifically, we found that 
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the speech preparation of a specific target could pre-
sumably induce the efference copy that selectively 
enhanced the processing of the auditory target. 
Whereas general action preparation without a speech 
target could presumably induce the corollary discharge 
that ubiquitously suppressed the processing of all 
speech sound, similar to the speech-induced suppres-
sion observed during the execution phase (e.g. Houde 
et al., 2002). IA can be considered as preparation without 
execution, which could selectively induce the efference 
copy, link to the specific auditory representation and 
enhance the sensitivity of the auditory target (Ma & 
Tian, 2019; Tian & Poeppel, 2013; Tian et al., 2016). 
Whereas the execution in OA and SA causes articulatory 
representation in the auditory areas, which may provide 
additional sources for suppressing the processing of the 
auditory target, and result in a function of separating ex- 
afferent (external stimuli) and re-afferent (feedback) 
information.

Comparing the univariate analyses with RSA in this 
study, the results are mostly consistent with each other, 
as the most ROIs we defined were also activated in the 
univariate analysis. In the literature, the univariate ana-
lysis and multi-voxel pattern classification (MVPC) were 
mainly used on the same contrasts (Kriegeskorte et al., 
2007), with the MVPC taking advantage of systematic 
variance distributed across voxels to increase the detec-
tion sensitivity (Jimura & Poldrack 2011). Note that the 
purposes of the univariate analysis and RSA in this study 
were essentially different. Specifically, we used the con-
trasts of one task against the baseline or another task in 
the univariate analysis. However, we conducted RSA 
within a specific task to examine the neural representa-
tion of phonetic features. Hence, these two methods are 
complementary to provide distinct characteristics about 
the strength, extent, and patterns of representation in 
the motor-to-sensory transformation network.

The important methodological implication of this 
study is the combination of conventional univariate ana-
lyses and RSA methods. Specifically, univariate analyses 
could examine the involvement of a region in specific 
cognitive activities. RSA could be used complementarily 
to indicate specific representational content in a region 
(Mur et al., 2009). Future studies can use RSA to examine 
the neural representational content in speech learning 
and speech-related disorders. For example, RSA could be 
used to examine the discrepancy of representational 
content between the noisy perceptual estimation and 
external feedback in stuttering (Tian & Poeppel, 2012) as 
well as the similarity between the motor-to-sensory 
transformation and speech goal (Liu & Tian, 2018).

In conclusion, the present study employed three speech 
tasks and fMRI to systematically examine the motor-to- 

sensory transformation during speech production. The 
univariate and RSA results revealed the frontal-parietal- 
temporal network that mediates the motor-to-sensory 
transformation. Moreover, the RSA results further sug-
gested a bimodal representation that subserves the trans-
formation between motor and sensory systems, and this 
extension of motor representation into sensory regions is 
constrained by task and motor involvement. These consis-
tent results provided evidence for the dynamics and task- 
dependent transformation between representational for-
mats in the motor-to-sensory transformation.
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